Retinoic Acid Signaling: A New Piece in the Spoken Language Puzzle
نویسندگان
چکیده
Speech requires precise motor control and rapid sequencing of highly complex vocal musculature. Despite its complexity, most people produce spoken language effortlessly. This is due to activity in distributed neuronal circuitry including cortico-striato-thalamic loops that control speech-motor output. Understanding the neuro-genetic mechanisms involved in the correct development and function of these pathways will shed light on how humans can effortlessly and innately use spoken language and help to elucidate what goes wrong in speech-language disorders. FOXP2 was the first single gene identified to cause speech and language disorder. Individuals with FOXP2 mutations display a severe speech deficit that includes receptive and expressive language impairments. The neuro-molecular mechanisms controlled by FOXP2 will give insight into our capacity for speech-motor control, but are only beginning to be unraveled. Recently FOXP2 was found to regulate genes involved in retinoic acid (RA) signaling and to modify the cellular response to RA, a key regulator of brain development. Here we explore evidence that FOXP2 and RA function in overlapping pathways. We summate evidence at molecular, cellular, and behavioral levels that suggest an interplay between FOXP2 and RA that may be important for fine motor control and speech-motor output. We propose RA signaling is an exciting new angle from which to investigate how neuro-genetic mechanisms can contribute to the (spoken) language ready brain.
منابع مشابه
Retinoic Acid Determines the Fate of Spermatogonia
In this review, we aim to examine the effect of extrinsic and intrinsic factors on spermatogenesis process taking into account a complex signaling pathway. Primarily, it is suggested that retinoic acid (RA) has a vital function in spermatogenesis process and it is considered to be essential for completion of spermatogonia into mature spermatozoa. In the present review, the key effects of retino...
متن کاملAll-trans Retinoic Acid Regulates the Balance of Treg-Th17 Cells through ERK and P38 Signaling Pathway
متن کامل
9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways
Background: Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways.Methods: Co...
متن کاملThe Effect of Retinoic Acid on Seminal Vesicle Epithelial Cell
Purpose: The seminal vesicles are androgen dependent exocrine glands producing protein-rich secretion. The retinoic acid has been implicated as a signaling molecule for the seminal vesicle development. In the present study, the effect of retinoic acid on seminal vesicle epithelial cell of neonatal mouse was investigated. Materials and Methods: Newborn male N-MRI mice were injected intraperiton...
متن کاملProphylactic effect of all-trans retinoic acid in an amyloid-beta rat model of Alzheimer\'s disease
Introduction: Retinoid signaling has been argued to have favorable effects on Alzheimer's disease (AD). We studied the role of chronic intracerebroventricular (ICV) injection of all-trans retinoic acid (ATRA) on the amyloid-beta (Aβ) model of AD. Methods: Adult male rats weighing 260-330 g were divided into 12 groups of 8 each. Six groups of rats received ATRA (3nM, 30nM, 3μM, 0.3mM, 30...
متن کامل